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EXECUTIVE SUMMARY 

End diaphragms connect multiple girders to form a bridge superstructure system for effective resistance to 
earthquake loads. Concrete girder bridges that include end diaphragms consistently proved to perform 
well during previous earthquake events. However, whether concrete bridges without end diaphragms are 
definitively inadequate in seismic performance is unknown. The 2010 Chile Earthquake seemed to 
indicate that properly designed bridge girders and their lateral movement stoppers (shear keys) may 
perform equally well with those with end diaphragms. This study is particularly significant in the context 
of accelerate bridge construction since concrete diaphragms are often cast in place and eliminating them 
can save field erection time and cost.  

In this study, the feasibility design of girder bridges without end diaphragms is presented. The main 
objective of this study is to understand how multiple girders can work together during a transverse 
earthquake excitation without breaking the girders and bridge deck so that the no-diaphragm concept can 
be realized in bridge design. To achieve the objective, a three-dimensional finite element model of a 
representative concrete girder bridge with and without end diaphragms is established. Nonlinear analysis 
with surface contact elements introduced is conducted in ABAQUS to understand the effects of various 
design parameters (e.g. diaphragm height, diaphragm thickness, the coefficient of friction between girders 
and their supporting elements, the number and size of shear keys) on transverse girder movement capacity. 
Numerical results indicate that properly designed end diaphragms can increase the transverse capacity of 
a bridge by making individual girders work together but may be substituted by shear keys placed between 
the strengthened girders. The shear keys can significantly increase both the capacity and stiffness of the 
bridge superstructure in transverse direction and have little effect in vertical direction. Shear keys are 
more reliable than the friction mechanism between girders and supporting elements such as cap beams 
since friction can vary during an earthquake. In particular, movable shear keys are more effective in 
distributing loads among multiple girders. A compound spring model is presented as an analytical model 
of movable shear keys and validated by numerical simulations. Properly designed movable shear keys 
may significantly improve the seismic performance of multi-girder bridges without end diaphragms.
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with surface contact elements introduced is conducted in ABAQUS to understand the effects of various 
design parameters (e.g. diaphragm height, diaphragm thickness, the coefficient of friction between girders 
and their supporting elements, the number and size of shear keys) on transverse girder movement capacity. 

1.2 Pushover Analysis 

In a study of the structural behavior of bridges under earthquake loading, an adequate characterization and 
interpretation of the seismic demand requests the consideration of the nonlinear behavior of structural 
elements. Given that the current seismic design and assessment codes emphasize the need for more 
accurate deformation analyses, instead of the common force-based ones, there is a clear advantage in 
using nonlinear analysis to obtain a more precise characterization of deformation measures such as 
ductility demand. 

Pushover analysis, also known as nonlinear static analysis, can provide an insight into the structural 
performance during severe earthquakes. 9-11 It provides the capacity and ductility of the structure, which 
cannot be obtained by elastic analysis. The load-displacement curve obtained by pushover analysis is 
known as the capacity curve that characterizes the structural capacity. By comparing the capacity curve 
with the demand curve which depends upon the seismic ground motion, whether a structure is adequate in 
resisting the earthquake effect will be evaluated. In addition, by pushover analysis the potential failure 
mode can be identified, which leads to an optimal   structural design. 

In recent years, the capacity spectrum method has rapidly gained increasing acceptance. It was 
originally developed by Freeman.12 The capacity spectrum method compares the capacity of a structure 
with the seismic demand on the structure through a graphical procedure. The graphical presentation 
makes possible a visual evaluation of how the structure will perform when subjected to earthquake 
ground motion, as shown in Fig. 1.2.13 The capacity of the structure is represented by a force-
displacement curve, obtained by pushover analysis. The shear force-displacement relations are converted 
to the spectral acceleration and spectral displacement of an equivalent single-degree-of-freedom (SDOF) 
system, respectively. These spectral values define the capacity spectrum. The demands of the earthquake 
ground motion are defined by highly damped elastic spectra. The acceleration-displacement response 
spectrum (ADRS) format is used, in which spectral accelerations are plotted against spectral 
displacements with the vibration periods represented by radial lines. The intersection of the capacity 
spectrum and the demand spectrum provides an estimate of the inelastic acceleration (strength) and 
displacement demand.13,14  

 
Fig. 1.2 Capacity spectrum method. 

To carry out a pushover analysis, the force distribution and target displacement are based on 
assumptions. Hence, if the structural response is significantly influenced by higher modes, it will be in 
principle inaccurate to count only the fundamental mode. That is, it may not detect structural damage 
resulting from the change in structural dynamic characteristics. One practical method to partly overcome 
this limitation is to apply the model pushover analysis (MPA).15 
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In this study, pushover analysis was carried out to analyze the failure modes of bridge structures with 
various end diaphragm and boundary conditions. The transverse flexural stiffness of a simply-supported 
beam is often very large in the deck plane. In most cases, the fundamental mode shape will thus dominate 
in the seismic analysis. In addition, the gravity center is near the deck plane. Therefore, a transverse point 
load can be applied on the deck. The bridge system will eventually fail as the applied load increases, and 
the failure mode can thus be demonstrated. With gravity loads, the superstructure was also subjected to 
friction in addition to the transverse point load. In this study, only transverse ground motion was 
considered and no vertical ground motion and rocking were taken into account. 

1.2.1 Failure modes 

To design a structural system for a given function, engineers must understand how the system works and 
fails. Possible failure modes of the structure must be understood with corresponding failure criteria. For a 
structure or a structural member under loads, the structural response depends not only on the materials but 
also on the environmental and loading conditions. 

Depending on how it is loaded, a structural member may fail by excessive deflection, losing its 
design function; by plastic deformation (generally yielding), resulting in a permanent, undesirable change 
in shape; or by ductile or brittle fracture (break); or by progressive growth of one or more cracks in a 
member subjected to repeated loads, often culminates in a brittle fracture type of failure. Elastic or plastic 
instability is another failure mode. In this failure manner, the structural member may undergo large 
displacements from its design configuration when the applied load reaches a critical value, the buckling 
load (or instability load). This type of failure may result in excessive displacement or loss of ability 
(because of yielding or fracture) to carry the design load. In addition to the failure modes already 
mentioned, a structural member may fail because of corrosion. 

The failure modes of structural members mainly include: 1. failure by excessive deflection: a. elastic 
deflection; b. deflection caused by creep. 2. Failure by general yielding. 3. Failure by fracture: a. sudden 
fracture of brittle materials; b. Fracture of cracked or flawed members; c. Progressive fracture (fatigue). 4. 
Failure by instability. 

These failure modes and their associated failure criteria are most meaningful for simple structural 
members (e.g., tension members, columns, beams, circular cross section torsion members). For more 
complicated problems, the significance of such simple failure modes is open to question. Many of these 
failure modes for simple structural members are well known to engineers. However, under unusual 
conditions of load or environment, other types of failure may occur. The physical action in a structural 
member leading to failure is usually a complicated phenomenon, and in the following discussion the 
phenomena are necessarily oversimplified, but they nevertheless retain the essential features of the 
failures. 

1.2.2 Three-dimensional nonlinear finite element model 

Three-dimensional (3D) nonlinear finite element (FE) modeling technique has been widely applied in 
various applications besides civil engineering, which provide informative simulation results.6-8 In this 
research, 3D nonlinear FE models were established for the analysis of the 3D detailed stresses in bridge 
structures. Nonlinear material properties and boundary conditions were taken into consideration. 

3D nonlinear FE modeling technique could be implemented by various finite element codes. 
ABAQUS codes were adopted in this research to take advantage of the high computation efficiency for 
3D detailed stress problems and high accuracy for nonlinear problems.16 

1.3 Outline of the Report 

In this research, the failure modes and capacities of bridges with different end diaphragm and 
boundary conditions were investigated by pushover analyses using 3D nonlinear FE method. 
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Different bridge structures were evaluated based on the structural performances, and how the 
multiple girder work together was demonstrated. In addition, sacrificial shear keys were 
implemented to improve the ductility of the bridges, and various designs were proposed.  

The report was organized in seven sections. 
Section 1 is the introduction covering the main objectives and background technologies of this 

research. 
Section 2 introduces the bridge and the implementation of the FE modeling technique. 
Section 3 elaborates the analysis of the original bridge, and then the function of the end diaphragms 

are characterized by varying the diaphragm height and thickness for bridges with two types of shear key 
conditions. 

Section 4 elaborates the analyses of bridges without end diaphragm, and the function of the exterior 
and interior shear keys are investigated. 

Section 5 presents a novel design of ductile shear key and a model of compound springs. The 
proposed design is evaluated and the model is validated by numerical simulations. 

Section 6 briefly summarizes the findings in this study. 
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SECTION 2 DESCRIPTIONS OF THE BRIDGE AND THE MODELING 

2.1 Bridge Description 

Extensive modeling in this research was conducted by using an existing Missouri Bridge as a subject for 
the simulations looking into the effects of introducing shear keys and concrete diagrams at the supports. 
The goal was to base the simulation on an existing structure to quantify observable change. An existing 
bridge named Stoddard County Bridge was used as the subject of this study, as shown in Fig. 2.1. The 
bridge which was built in 1995, and is a three-span prestressed concrete bridge consisting of five girders 
that are simply supported on the pier cap or abutment. The length of each span is 28 m with zero 
longitudinal slopes. Cast-in-place concrete piles were used for the foundation. Each pier is seated on six 
deep cylindrical piles. 

 
Fig. 2.1 Three-span prestressed concrete bridge. 

The design was based on AASHTO-1992 and interims through 1994. The concrete for the 
prestressed girders was Class A1 with f’c= 41 MPa and f’ci= 31 MPa. The prestressing tendons were 
uncoated seven-wire low-relaxation strands with a 12.7 mm diameter conforming to AASHTO-M203 
Grade 270. In each girder, 36 strands were used with an initial prestressing force of 5 kN. Mild 
reinforcement was also used, including #4 and #6 rebar in girders, and #6 and #8 rebar in the deck. The 
minimum clearance of mild reinforcement was 4 cm. The Stoddard County Bridge was installed with full 
reinforced concrete diaphragms, and the diaphragm thickness was 30 cm. 

2.2 Finite Element Modeling 

The failure mode and capacity under transverse load of each bridge superstructure were investigated and 
compared in this study based on the structural behaviors that were analyzed by FE method. The modeling 
is hereby introduced. 

2.2.1 Assumptions 

To simplify the FE model, three assumptions were taken into consideration. 
(1) The bridge substructures such as piers or abutments are strong and thus will not be damaged in 

the loading process. The bridge superstructure is focused on. The substructures can be simplified as the 
caps that provide boundaries for the superstructure. 

(2) The kinematic friction coefficient (FC) between concrete surfaces is assumed to be 0.2, which is 
not accurate in many cases, so a sensitivity study is carried out. 

(3) The bridge is very stiff in the deck plane and therefore only the first vibration mode was 
considered in that plane. 
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(c) Top layer of mild rebar in the deck. 

 
(d) Bottom layer of mild rebar in the deck. 

Fig. 2.3 Simulations of the reinforcement in bridge superstructure. 

2.2.3 Material models 

The main bridge superstructure consisted of concrete, mild rebar, high strength steel tendons, and steel 
anchorage system; rubber bearings were used. Nonlinear stress-strain relations were defined for concrete 
and mild rebar in bridge superstructure. 

Concrete damaged plasticity (CDP) model was used to characterize the concrete material as shown 
in Fig. 2.4. CDP model provides a capability for modeling concrete using concepts of isotropic damaged 
elasticity in combination with isotropic tensile and compressive plasticity to represent the inelastic 
behavior of concrete.17 CDP model can be used for plain concrete and reinforced concrete. It was 
designed for applications in which concrete is subjected to monotonic, cyclic, and/or dynamic loading 
under low confining pressures. CDP model is a continuum, plasticity-based, damage model for concrete. 
It assumes that the main two failure mechanisms of concrete are tensile cracking and compressive 
crushing. The evolution of the yield (or failure) surface is controlled by tensile and compressive 
equivalent plastic strains, ߝ௧̃

  and ߝ̃
 , linked to failure mechanisms under tension and compression 

loading, respectively.18,19 CDP model assumes that the uniaxial tensile and compressive responses of 
concrete are characterized by damaged plasticity. 

 
(a) Tension.                                                  (b) Compression. 

Fig. 2.4 Concrete response to uniaxial loading. 
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Under uniaxial tension, the stress-strain response follows a linear elastic relationship until reaching 
the failure stress value, σt0. The failure stress corresponds to the onset of micro-cracking in the concrete 
material. Beyond the failure stress the formation of micro-cracks is represented macroscopically with a 
softening stress-strain response, which induces strain localization in the concrete structure. Under uniaxial 
compression, the response is linear until the initial yield value, σc0. In the plastic regime the response is 
typically characterized by stress hardening followed by strain softening beyond the ultimate stress, σcu. 

When the concrete specimen is unloaded from any point on the strain softening branch of the stress-
strain curves, the unloading response is weakened: the elastic stiffness of the material appears to be 
damaged (or degraded). The degradation of the elastic stiffness is characterized by two damage variables, 
dt and dc, which are assumed to be functions of the plastic strains, temperature, and field variables. 

);,,~( i
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The damage variables can take values from zero, representing the undamaged material, to one, which 
represents total loss of strength. 

If E0 is the initial (undamaged) elastic stiffness of the material, the stress-strain relations under 
uniaxial tension and compression loading are, respectively: 
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Effective cohesion stresses determine the size of the yield (or failure) surface. The “effective” tensile 
and compressive cohesion stresses as: 
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The density is 2500 kg/m3; Young’s modulus is 30 GPa; Possion ratio is 0.21.20  
Bars are considered as one-dimensional rods that can be defined singly or embedded in oriented 

surfaces. Bars are typically used with metal plasticity models to describe the behavior of the rebar 
material and are superposed on a mesh of standard element types used to model the concrete. With this 
modeling approach, the concrete behavior is considered independently of the rebar. Effects associated 
with the rebar/concrete interface, such as bond slip and dowel action, are modeled approximately by 
introducing some “tension stiffening” into the concrete modeling to simulate load transfer across cracks 
through the rebar. 

Mild bar was defined as ideal elasto-plastic material, as shown in Fig. 2.5. The density is 7800 kg/m3, 
the Young’s modulus is 210 GPa, and the Possion ratio is 0.3. Prestressed tendons are made of high 
strength steel that demonstrated linear elastic behavior, and thus was defined as linear elastic material. 
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Fig. 2.5 Bilinear model. 

In finite element analysis, small contact surface between a pair of contacting surfaces will lead to 
stress concentration for elastic materials but usually will not cause computation problem; however, for 
inelastic materials, most often the iterative computations cannot converge to a good solution due to the 
stress concentration.21 To address this issue, the transverse point load was applied onto an elastic steel 
block that is tied onto the bridge deck, and then the point load can be distributed by the contact area so the 
stress concentration problem will be avoided. 

2.2.4 Prestressing 

For the prestressed tendons, when prestressing force was applied to the prestressed tendons, the concrete 
near the two ends of the tendons would be subjected to high stress change due to the strain transfer from 
the tendons to the concrete, and the stress concentration happened which prevented the computation from  
converging. An anchorage system was used to address this issue following the same concept. In addition, 
the modeling of the anchorage system matched with the real world applications. 

The prestressing in prestressed tendons was simulated by temperature decrease based on the relation 
between strain change and temperature change. As described in equation (2.1), the prestressing force in 
the tendons is related to the strain change that is equal to the temperature change multiplied by the 
coefficient of thermal expansion (CTE). Given the Young’s modulus and cross section of the tendons, the 
temperature change that needs to be applied can be calculated by the presstressing force. 

TEAEAFps                                                               (2.1) 

where, Fps denotes prestressing force, E, A, and α represent the Young’s modulus, the cross section, and 
the CTE of the tendons, respectively; ΔT denotes the temperature change. 

If an analysis is undertaken of a practical structure with only the prestress acting, it is often found 
that cracking of the concrete is predicted. This is because the cable is designed to partially balance the 
stress due to external load. It is convenient therefore to analyze the initial state of the structure with the 
effects of both the prestressed and self-weight. If these effects are analyzed separately spurious non-linear 
effects are introduced because of cracking. Because the behavior in the post cracking stage is significantly 
non-linear, it is not possible to treat the two effects separately and superpose the results. 

2.2.5 Analysis algorithm 

Pushover analysis involves progressive collapse behavior, where the load-displacement response shows a 
negative stiffness and the structure must release strain energy to remain in equilibrium. Several 
approaches are possible for modeling such behavior. One is to treat the buckling response dynamically, 
thus actually modeling the response with inertia effects included as the structure snaps. This approach is 
easily accomplished by restarting the terminated static procedure and switching to a dynamic procedure 
when the static solution becomes unstable. In some simple cases displacement control can provide a 
solution, even when the conjugate load (the reaction force) is decreasing as the displacement increases. 
Another approach would be to use dashpots to stabilize the structure during a static analysis. 
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Alternatively, static equilibrium states during the unstable phase of the response can be found by the 
“modified Riks method”.22-24 This method is used for cases where the loading is proportional; that is, 
where the load magnitudes are governed by a single scalar parameter. The method can provide solutions 
even in cases of complex, unstable response such as that shown in Fig. 2.6. 

 
Fig. 2.6 Proportional loading with unstable response. 

The established FE models were solved by modified Risk (arc-length) method that was usually used 
to predict unstable, geometrically nonlinear collapse of a structure including nonlinear materials and 
boundary conditions. The Riks method uses the load magnitude as an additional unknown; it solves 
simultaneously for loads and displacements. Therefore, “arc length” along the static equilibrium path in 
load-displacement space another quantity is used to measure the progress of the solution. This approach 
provides solutions regardless of whether the response is stable or unstable. 

If the Riks step is a continuation of a previous history, any loads that exist at the beginning of the 
step and are not redefined are treated as “dead” loads with constant magnitude. A load whose magnitude 
is defined in the Riks step is referred to as a “reference” load. All prescribed loads are ramped from the 
initial (dead load) value to the reference values specified. 

The loading during a Riks step is always proportional. The current load magnitude, Ptotal, is defined 
by equation (2.2). 

)( 00 PPPP reftotal                                                         (2.2) 

where P0 is the “dead load,” Pref is the reference load vector, and λ is the “load proportionality factor.” 
The load proportionality factor is found as part of the solution. 

The Riks procedure uses only a 1% extrapolation of the strain increment. An initial increment in arc 
length along the static equilibrium path, Δlin, is specified when the step is defined. The initial load 
proportionality factor, Δλ in, is computed as  

period

in
in l

l
                                                                  (2.3) 

where, lperiod is a user-specified total arc length scale factor (typically set equal to 1). The value of Δλ in is 
used during the first iteration of a Riks step. For subsequent iterations and increments the value of λ is 
computed automatically, so you have no control over the load magnitude. The value of λ is part of the 
solution. The minimum and maximum arc length increments, Δlmin and Δlmax, can be used to control the 
automatic incrementation. A simplified flowchart of the nonlinear static analysis procedure is illustrated 
in Fig. 2.7. 
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Fig. 2.7 Simplified flowchart of nonlinear static analysis. 
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2.3 Outline of Simulation Matrixes 

2.3.1 Bridges with end diaphragms 

Table 2.1 shows the organization of simulations for bridges with end diaphragms. The functions and 
effectiveness of diaphragm height, thickness, and the friction coefficient (FC) of the support were 
evaluated.  

Table 2.1 Simulations of bridges with end diaphragms. 
            Thickness 
                     (cm) 
Height 

10 20 30 40 50 

1/4 --- --- FC=0.2 --- --- 

2/4 --- --- 
FC=0 

FC=0.1 
FC=0.2 
FC=0.3 

--- --- 

3/4 --- --- FC=0.2 --- --- 

1 (full diaphragm) FC=0.2 FC=0.2 FC=0.2 FC=0.2 FC=0.2 

In the investigation of the influence of diaphragm height, the diaphragm thickness and FC were set to 
be 30 cm and 0.2, respectively, and the height ratio was varied from 100% to 25% with a 25% step. 

Bridges installed with full diaphragms were used in the evaluation of the diaphragm thickness; FC 
was fixed as 0.2; the thickness was varied from 50 cm to 10 cm with a 10 cm step. 

Bridges with half diaphragms were used in the investigation of the influence of FC; the diaphragm 
thickness was 30 cm; FC was varied from 0.3 to 0 with a 0.1 step. 

In each case, the failure mode, transverse stiffness and capacity of were investigated. The impact of 
each parameter was quantified by the comparison of structural behaviors when the parameter was 
changed. 

2.3.2 Bridges without end diaphragm 

Table 2.2 shows the organization of simulations for bridges without end diaphragm. The impact and 
effectiveness of the number of interior shear key, the friction coefficient (FC) of the support and the 
construction error were evaluated. The construction error was simulated by presetting gaps between the 
girders and shear keys. Based on the results of simulations and comparisons, the concept of slidable shear 
key was presented, and a design was proposed. The proposed design was evaluated by finite element 
analysis. 
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Table 2.2 Simulations of bridges without end diaphragm. 
Number of 

 interior SK 

      FC 
0 1 2 3 4 

0 (frictionless) Fixed SK --- --- --- --- 

0.1 Fixed SK --- --- --- --- 

0.2 Fixed SK Fixed SK Fixed SK 

Fixed SK 
Fixed SK with gap 

Slidable SK 
Slidable SK with gap 

Fixed SK 

0.3 Fixed SK --- --- --- --- 

In each case, the failure mode, transverse stiffness and capacity of were investigated. The impact of 
each parameter was quantified by the comparison of structural behaviors when the parameter was 
changed. 
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SECTION 3 ANALYSIS OF BRIDGES WITH END DIAPHRAGMS 

In this section, the failure modes and transverse capacities of bridge superstructures with end diaphragms 
were investigated by carrying out pushover analyses.  
Exterior shear keys are designed to constrain the transverse movement of the girders subjected to seismic 
ground motions.25,26 When the girders transversely move and contact the exterior shear keys, transverse 
contact forces will be provided to resist the inertia force due to the earthquake. On the other hand, the 
transverse force will be applied on the exterior girder. 

Both end and intermediate diaphragms benefit the bridge by enhancing the overall stiffness of the 
bridge can be increased. When a bridge is subjected to vertical loads, for instance, the vehicle loads, the 
bridge can take advantage of the enhancement, in that the vehicle loads can be distributed more uniformly 
to the multiple girders.27,28 There are two enhancement mechanisms for bridges subjected to transverse 
force. First, diaphragms are designed to be stiff and have high strength in plane, so they can help resist 
transverse force applied on the superstructure. Bridge girders are designed to mainly resist vertical load; 
hence, they usually have small stiffness and strength in the transverse direction, which can be 
compensated by the end diaphragms. On the other hand, the connections between multiple girders are 
enhanced and hence the transverse force can be resisted by multiple girders together instead of being 
resisted by the exterior girder. Therefore, the seismic performance of a bridge is closely related to the 
configuration of the end diaphragm, which was observed in failures noted in the 2010 reconnaissance trip 
to Chile.4,5 

The failure mode and transverse capacity associated with the height and thickness of the end 
diaphragms were investigated and elaborated below. 

3.1 Parametric Study of Diaphragm Height 

Four cases corresponding to four levels of end diaphragm height were investigated, including 100%, 75%, 
50%, and 25%, as shown in Fig. 3.1. The thickness of the diaphragms was 30 cm. 

 
Fig. 3.1 Bridges installed with different heights of end diaphragms. 
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(b) Zoom in the end diaphragm zone 

Fig. 3.3 Maximum principal stress distribution under self-weight and prestressing. 

 
Fig. 3.4 Vertical deflection under self-weight and prestressing. (×500). 

 
(a) Top view of the superstructure. 

 
(b) Zoom in the end diaphragm zone 

Fig. 3.5 Maximum principal stress under self-weight, prestressing and transverse load. (×10). 
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Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 3.5. Exterior girder ‘G1’ and its adjacent zones are under high stress. Under transverse loading, the 
superstructure drifts and surface-to-surface contact is gradually established between G1 and the exterior 
shear key ‘E1’. Then a contact force will be applied on G1 in the transverse direction and therefore the 
zones around G1 is under high stress. The corner of the deck where the transverse force is applied via a 
small cushion block is under high stress. This is a localized bahavior that is related to the simulation 
method of the load. In a real world earthquake, inertia force is applied to the whole structure in terms of 
mass distribution instead of being concentrated at a corner, so localized behaviors associated with the 
loading method do not need to be taken into consideration.  

With the increase of transverse load, cracks will be initiated at the top of the deck and the web of 
exterior girder simultaneously. The damage development process is shown in Fig. 3.6. The damage 
propagates in the deck and the end diaphragm, and will potentially go through the interior girders; the 
cracks in girders propagate along the longitudinal direction. 

 

 

 
Fig. 3.6 Damage development in the superstructure. 

Besides the concrete cracks, the bars reinforcing the concrete will gradually yield with the increase 
of load. Eventually the superstructure fails. The pushover curve is shown in Fig. 3.7. Onset of crack 
corresponds to 2 mm transverse drift. Then the structure will undergo a ‘softening’ stage representing the 
propagation of cracks in the concrete; however, the structure can resist higher load during that stage, 
because the concrete is reinforced by rebar that can provide tensile strength and restrain the cracking. 
With the propagation and widening of the cracks, eventually the rebar will yield and thus the structure 
will lose strength and fail. 
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Fig. 3.7 Pushover curve (Load-Displacement relation). 

Von Mises stress distributions in mild rebar and prestressed tendons are shown in Figs. 3.8 and 3.9, 
respectively. As introduced in Section 2, the yielding stress of mild rebar is 414 MPa (60 kips), the tensile 
strength of the prestressed tendons is 1860 MPa. Von Mises criterion is applied to control the yielding 
conditions. The yielding of mild rebar can be observed in Figs. 3.8 and 3.9; however, the prestressed 
tendons are working within the elastic range. 

 
Fig. 3.8 Von Mises stress in mild rebar. (×10). 

 
Fig. 3.9 Von Mises stress in prestressed tendons. (×10). 

Vertical deflection under self-weight, prestressing, and transverse force is shown in Fig. 3.10. The 
deflection distribution is overall symmetrical about the middle span in the longitudinal direction; however, 
in the transverse direction, the deflection is not symmetrical about the G3. The superstructure drifts due to 
the transverse force; the end diaphragms are compressed and distorted, and the girders are bent due to the 
shear force caused by the contact between G1 and E1. 
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Fig. 3.10 Vertical deflection under self-weight, prestressing, and transverse force. (×500). 

3.1.2 Installed diagram of 75% girder height 

The meshed FE model of bridge with 75% end diaphragm is shown in Fig. 3.11. 

 
Fig. 3.11 A simplified FE model of bridge installed diaphragm of 75% girder height. 

Maximum principal stress distribution under self-weight and prestressing is shown in Fig. 3.12. 
Vertical deflection under self-weight and prestressing is shown in Fig. 3.13. The deflection distribution is 
overall symmetrical about the middle span in the longitudinal direction, and symmetrical about the G3 in 
the transverse direction. 

 
Fig. 3.12 Maximum principal stress distribution under self-weight and prestressing. (×500). 
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Fig. 3.13 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 3.14. The damage location is demonstrated to be in the exterior girder at the joint with the partial 
end diaphragm. 

 
(a) Top view of the superstructure. 

 
(b) Zoom in the end diaphragm zone. 

Fig. 3.14 Maximum principal stress under self-weight, prestressing and transverse load. 

Fig. 3.15 shows the damage in San Nicholas Bridge after the 2010 Chile earthquake. San Nicholas 
Bridge is a reinforced concrete bridge with partial end diaphragm instrumented with seismic bars. The 
exterior girder was damaged at the joint with the partial end diaphragm during the earthquake, which is in 
good agreement with the simulation results. 
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diaphragm was stiff in its plane; hence, the zones that were reinforced by the diaphragms were stiff and 
thus demonstrated relatively small displacement. 

 
(a) Top view of the whole structure. 

 
(b) Zoom in the deformed exterior girder. 

Fig. 3.18 Transverse drift under self-weight, prestressing, and transverse force. (×10). 

3.1.3 Installed diagram of 50% girder height 

The meshed FE model of bridge with 50% end diaphragm is shown in Fig. 3.19. 

 
Fig. 3.19 A simplified FE model of bridge installed diaphragm of 50% girder height. 

Maximum principal stress distribution under self-weight and prestressing is shown in Fig. 3.20. 
Vertical deflection under self-weight and prestressing is shown in Fig. 3.21. Compared with the bridge 
with full end diaphragms, the bridge with partial end diaphragms demonstrated similar stress and 
displacement results under self-weight and prestressing. 
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Fig. 3.20 Maximum principal stress under self-weight and prestressing. (×500). 

 
Fig. 3.21 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 3.22. The pushover curve is shown in Fig. 3.23. 

 
(a) Top view of the superstructure. 

 
(b) Zoom in the end diaphragm zone. 
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Fig. 3.22 Maximum principal stress under self-weight and prestressing.  

 
Fig. 3.23 Pushover curve (Load-Displacement relation). 

Fig. 3.22 shows that cracking initiates at the top of the deck and the web of exterior girder 
simultaneously. The damage development is shown in Fig. 3.24. The damage propagates in the deck and 
the end diaphragm, and will potentially go through the interior girders; the cracks in girders propagate 
along the longitudinal direction. The damage behavior demonstrated is in good agreement with the 
damage observed in the San Nicholas bridge shown in Fig. 3.12. 

 

 

 
Fig. 3.24 Damage development in the superstructure. 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 3.25. Similar to Fig. 3.18, overall the whole superstructure shifted in the transverse direction due 
to the transverse load, except for the end of G1 which was restrained by the exterior shear key. The end 
diaphragm was stiff in its plane; hence, the zones that were reinforced by the diaphragms were stiff and 
thus demonstrated relatively small displacement. 
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(a) Top view of the whole structure. 

 
(b) Zoom in the deformed exterior girder. 

Fig. 3.25 Lateral displacement under self-weight, prestressing, and transverse force. (×10). 

3.1.4 Installed diagram of 25% girder height 

The meshed FE model of bridge with 25% end diaphragm is shown in Fig. 3.26. 

 
Fig. 3.26 A simplified FE model of bridge installed diaphragm of 25% girder height. 

Maximum principal stress distribution under self-weight and prestressing is shown in Fig. 3.27. 
Vertical deflection under self-weight and prestressing is shown in Fig. 3.28. Compared with the bridge 
with full end diaphragms, under self-weight and prestress, the bridge with partial end diaphragms 
demonstrated similar stress and displacement results in terms of the distribution and magnitude. 
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Fig. 3.27 Maximum principal stress distribution under self-weight and prestressing. (×500). 

 
Fig. 3.28 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 3.1.29.  

 
Fig. 3.29 Maximum principal stress under self-weight and prestressing. 
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Fig. 3.30 Pushover curve (Load-Displacement relation). 

The pushover curve is shown in Fig. 3.30. After the contact between E1 and G1 is established, 
reaction force will be applied to G1. With the increase of loading, maximum principal stress/strain in 
concrete will increase until crack is formed. Then the structure will undergo a ‘softening’ stage 
representing the propagation of cracks in the concrete; however, the structure can resist higher load during 
that stage, because the concrete is reinforced by rebar that can provide tensile strength and restrain the 
cracking. With the propagation and widening of the cracks, eventually the rebar will yield and thus the 
structure will lose strength and fail. 

Fig. 3.29 shows that cracking initiates at the top of the deck and the web of exterior girder 
simultaneously. The damage development is shown in Fig. 3.31. The damage propagates in the deck and 
the end diaphragm, and will potentially go through the interior girders; the cracks in girders propagate 
along the longitudinal direction. The damage behavior demonstrated is in good agreement with the 
damage observed in the San Nicholas bridge shown in Fig. 3.12. 

 

 

 
Fig. 3.31 Damage development in the superstructure. 
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Vertical deflection under self-weight, prestressing, and transverse force is shown in Fig. 3.32.  

 
Fig. 3.32 Vertical deflection under self-weight, prestressing, and transverse force. (×500). 

3.1.5 Discussion on diaphragm height 

The influence of end diaphragm height on vertical deflection and maximum principal stress of bridge 
superstructures under self-weight and prestressing is shown in Fig. 3.33 that indicates the diaphragm 
height does not significantly influence the bridge’s vertical behaviors. In Fig. 3.33, ‘0%’ represents the 
bridge without diaphragm. 

 
Fig. 3.33 Influence of diaphragm height on vertical behaviors. 

The diaphragm height significantly influences bridge’s transverse performance, including the failure 
mode, the transverse stiffness and capacity. The failure modes have been introduced in the preceding 
sections. For a bridge with full diaphragm, cracks initiate in the exterior concrete girder and the joint of 
deck and end diaphragm; however, for bridges with partial diaphragms, cracks most often initiate in an 
exterior girder. Fig. 3.34 shows the influence on transverse stiffness and capacity. With the increase of 
diaphragm height, the stiffness and capacity increase, as shown in Fig. 3.34. Therefore, under the same 
conditions, bridges with partial diaphragm usually suffer more than the bridges with full diaphragms, as 
demonstrated in Fig. 1.1. 
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Fig. 3.34 Comparison of pushover curves of bridges with different diaphragm heights. 

 
Fig. 3.35 Influence of diaphragm height on transverse behaviors. 

3.2 Parametric Study of Diaphragm Thickness 

Five cases corresponding to five levels of end diaphragm thickness were investigated, including 50 cm, 
40 cm, 30 cm, 20 cm, and 10 cm. The diaphragms have full height as shown in Fig. 3.36. 

 
Fig. 3.36 Bridges with different heights of end diaphragms. 
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Fig. 3.40 Maximum principal stress under self-weight, prestressing, and transverse force. 

 
Fig. 3.41 Vertical deflection under self-weight, prestressing, and transverse force. (×500). 

The load-displacement curve is shown in Fig. 3.42. At the beginning of the loading, the materials 
were elastic, and thus the displacement increased linearly with the load. When the stress/strain in concrete 
reached the elastic limit, crack would appear at the high stress zones shown in Fig. 3.40, and then the 
load-displacement curve would be nonlinear. A three-dimensional critical failure section was gradually 
formed. The decrease of slope represented the reduction of the superstructure’s transverse stiffness, which 
was caused by the propagation of damage. During this damaging process, the rebar held the concrete and 
restrained the development of cracks, so stress in rebar would gradually increase until yielding. Because 
the structure had multiple reinforcements, it would not fail at the onset of yield. Eventually, all rebar that 
went across the critical section yielded; the stiffness became negative and the superstructure could not 
resist larger load. 
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Fig. 3.42 Pushover curve (Load-Displacement relation). 

3.2.2 Installed 40 cm diaphragm 

The FE model corresponding to 40 cm end diaphragms is similar to the model shown in Fig. 3.37. 
Maximum principal stress distribution under self-weight and prestressing force is shown in Fig. 3.43, and 
vertical deflection under self-weight and prestressing force is shown in Fig. 3.44. The results are similar 
to the bridge with 50 cm end diaphragm discussed in the last section.  

 
Fig. 3.43 Maximum principal stress under self-weight and prestressing. (×500). 

 
Fig. 3.44 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressed tendons and transverse force is 
shown in Fig. 3.45. Similar to Fig. 3.40, two high stress level zones can be observed. One zone was in the 
exterior girder ‘G5’ where the transverse force was applied and this was a localized bahavior that would 

0

1000

2000

3000

4000

0 2 4 6 8 10 12 14 16

L
oa

d 
(k

N
)

Displacement (mm)

Onset of 
yeldingOnset of 

cracking

More bars yield



 

33 
 

not happen in the real earthquake. The other high stress level zone was at the joint of exterior girder ‘G1’ 
and an end diaphragm, which was the same as the bridge with 50 cm end diaphragms. 

 
Fig. 3.45 Maximum principal stress under self-weight, prestressing, and transverse force. (×10). 

Vertical deflection under self-weight, prestressing, and transverse force is shown in Fig. 3.46. The 
deflection distribution was overall symmetrical about the middle span in the longitudinal direction; 
however, in the transverse direction, the superstructure was distorted by the transverse load and thus it 
was not symmetrical about G3. The superstructure shifted due to the transverse force; the end diaphragms 
were compressed and distorted, and the girders were bent due to the shear force caused by the contact 
with the exterior shear key E1. 

 
Fig. 3.46 Vertical deflection under self-weight, prestress, and transverse force. (×500). 

The load-displacement curve was shown in Fig. 3.47 that was similar to that of the bridge with 50 
cm diaphragms, and it showed similar behaviors. 
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Fig. 3.47 Pushover curve (Load-Displacement relation). 

3.2.3 Installed 30 cm diaphragm 

The analysis for bridge with 30 cm end diaphragms has been introduced in Section 3.1 and thus will not 
be repeated. 

3.2.4 Installed 20 cm diaphragm 

The FE model corresponding to 40 cm end diaphragms is similar to the model shown in Fig. 3.37. 
Maximum principal stress distribution under self-weight and prestressing force is shown in Fig. 3.48, and 
vertical deflection under self-weight and prestressing force is shown in Fig. 3.49. 

 
Fig. 3.48 Maximum principal stress distribution under self-weight and prestressing. (×500). 

 
Fig. 3.49 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressed tendons and transverse force is 
shown in Fig. 3.50. Two high stress level zones can be observed. One zone was the vicinity of exterior 
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girder ‘G5’. The other high stress level zone was at the joint of exterior girder ‘G1’ and an end diaphragm, 
which was the same as the bridge with 50 cm end diaphragms. 

The deflection distribution was overall symmetrical about the middle span in the longitudinal 
direction; however, in the transverse direction, the superstructure was distorted by the transverse load and 
thus it was not symmetrical about G3. The superstructure shifted due to the transverse force; the end 
diaphragms were compressed and distorted, and the girders were bent due to the shear force caused by the 
contact with the exterior shear key E1. 

 
Fig. 3.50 Maximum principal stress under self-weight, prestressing, and transverse force. 

 
Fig. 3.51 Vertical deflection under self-weight, prestressing, and transverse force. (×500). 

 
Fig. 3.52 Pushover curve (Load-Displacement relation). 

3.2.5 Installed 10 cm diaphragm 

Maximum principal stress distribution under self-weight and prestressing is shown in Fig. 3.53, and 
vertical deflection under self-weight and prestressing is shown in Fig. 3.54. 
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Fig. 3.53 Maximum principal stress distribution under self-weight and prestressing. (×10). 

 
Fig. 3.54 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 3.55. 

 
(a) Top view of the concrete superstructure. 

 
(b) Zoom in the high stressed zone. 

Fig. 3.55 Maximum principal stress under self-weight, prestress, and transverse force. (×10). 
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Compared with the cases that the diaphragm thicknesses were 50 cm, 40 cm, 30 cm, and 20 cm, 
respectively, there was a critical difference. The structure with 10 cm diaphragm failed due to buckling of 
the diaphragm adjacent to the exterior girder ‘G1’. Subjected to combined compression and bending, the 
thin diaphragm lost stability and failed to support the girder. Hence, the damage was accelerated. 

Vertical deflection and longitudinal displacement under self-weight, prestressing, and transverse 
force are shown in Figs. 3.56 and 3.57, respectively. One end diaphragm buckled and large displacement 
was demonstrated in Figs. 3.56 and 3.57. The buckling of the diaphragm is manifested in the two figures. 

 
Fig. 3.56 Vertical deflection under self-weight, prestress, and transverse force. (×10). 

 
Fig. 3.57 Transverse drift under self-weight, prestressing, and transverse force. (×10). 

3.2.6 Discussion on diaphragm thickness 

Bridges with different thicknesses of end diaphragms were investigated and thus the influence of 
diaphragm thickness is evaluated. The diaphragm thickness does not significantly influence the bridge’s 
behaviors under self-weight and prestressing, which are known as vertical behaviors, as demonstrated in 
Fig. 3.58. No significant change for the vertical deflection and maximum principal stress observed with 
the change of diaphragm thickness. When the diaphragm thickness varies from 10 cm to 50 cm, the 
changes of the vertical displacement and maximum principal stress are only up to 6%. 

However, the comparison of the pushover curves corresponding to different diaphragm thicknesses 
in Fig. 3.59 demonstrates that the diaphragm thickness can significantly influence bridge’s transverse 
performance, including the failure mode, the transverse stiffness and capacity. ‘Transverse stiffness’ 
represents the slope of the linear portion of a pushover curve. 
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Fig. 3.58 Influence of diaphragm thickness on vertical behaviors. 

 
Fig. 3.59 Comparison of pushover curves of bridges with different diaphragm thicknesses. 

The failure modes have been introduced in the preceding sections. At the very beginning of the 
loading, the materials were ideal elastic, so the displacement increased linearly with the load in the five 
curves. When damage initiated, the curve would be nonlinear. Eventually the structure would fail due to 
the fracture of concrete and yield of rebar. However, with the change of diaphragm thickness, the 
structures could be divided into two groups. The first group includes bridges with 20-50 cm diaphragms 
which did not buckled. The bridge with 10 cm diaphragm was separated from the first group because it 
buckled and thus the capacity was much lower than the structure in the first group. 

The influence of diaphragm thickness on the transverse stiffness and capacity is manifested in Fig. 
3.60. When the diaphragm thickness is varied from 10-50 cm, the stiffness linearly increases; however, 
the change of capacity is nonlinear. The curve can be divided into two parts by one data point that 
corresponds to 30 cm diaphragm. When the thickness is smaller than 30 cm, the capacity increases fast, 
and up to 133% capacity can be obtained by increasing the diaphragm thickness from 10-30 cm. However, 
after the 30 cm thickness point, the capacity will keep constant. 
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Fig. 3.60 Influence of diaphragm thickness on transverse behaviors. 

3.3 Sensitivity Study for Friction Coefficient 

In the analyses of the influences of diaphragm thickness and height, it was observed that each one of the 
girders helped resist transverse load due to the friction force from the surface-to-surface contact between 
cap and girder. Sensitivity study for the friction coefficient was carried out in this section. The FE models 
used in this section are similar to the one with half end diaphragms which has been demonstrated in Fig. 
3.3; the only difference is the friction coefficient is changed. 

3.3.1 Friction coefficient 0.3 

The friction coefficient of surface-to-surface contact between cap and girder was changed to be 0.3. 
Maximum principal stress and vertical deflection distributions of the bridge under self-weight and 
prestressing are shown in Figs. 3.61 and 3.62. Compared with the bridge with full end diaphragms, under 
self-weight and prestress, the bridge with partial end diaphragms demonstrated similar stress and 
displacement results in terms of the distribution and magnitude. 

 
Fig. 3.61 Maximum principal stress under self-weight and prestressing. 
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Fig. 3.62 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestress, and transverse force is shown in 
Fig. 3.63. Cracking initiates at the top of the deck and the web of exterior girder simultaneously. 

 
(a) Top view of the superstructure. 

 
(b) Zoom in the end diaphragm zone. 

Fig. 3.63 Maximum principal stress under self-weight and prestressing. 

The pushover curve is shown in Fig. 3.64. After the contact between E1 and G1 is established, 
reaction force will be applied to G1. 
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Fig. 3.64 Pushover curve (Load-Displacement relation). 

The damage development is shown in Fig. 3.65. The damage propagates in the deck and the end 
diaphragm, and will potentially go through the interior girders; the cracks in girders propagate along the 
longitudinal direction. The damage behavior demonstrated is in good agreement with the damage 
observed in the San Nicholas bridge, as shown in Fig. 1.1. 

 

 

 
Fig. 3.65 Damage development in the superstructure. 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 3.66. Overall the superstructure shifted in the transverse direction due to the transverse load, 
except for the end of G1 which was restrained by the exterior shear key. The end diaphragm was stiff in 
its plane; hence, the zones that were reinforced by the diaphragms were stiff and thus demonstrated 
relatively small displacement. 
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Fig. 3.66 Transverse drift under self-weight, prestressing, and transverse force. (×10). 

3.3.2 Friction coefficient 0.2 

The friction coefficient of surface-to-surface contact between cap and girder was changed to be 0.2. 
Maximum principal stress and vertical deflection distributions of the bridge under self-weight and 
prestress are shown in Figs. 3.67 and 3.68. Compared with the bridge with full end diaphragms, under 
self-weight and prestress, the bridge with partial end diaphragms demonstrated similar stress and 
displacement results in terms of the distribution and magnitude. 

 
Fig. 3.67 Maximum principal stress under self-weight and prestressing. (×500). 
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Fig. 3.68 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 3.69. 

 
(a) Top view of the superstructure. 

 
(b) Zoom in the end diaphragm zone. 

Fig. 3.69 Maximum principal stress distribution under self-weight and prestressing. 

Fig. 3.69 shows that cracking initiates at the top of the deck and the web of exterior girder 
simultaneously. The damage development is shown in Fig. 3.70. The damage propagates in the deck and 
the end diaphragm, and will potentially go through the interior girders; the cracks in girders propagate 
along the longitudinal direction. The damage behavior demonstrated is in good agreement with the 
damage observed in the San Nicholas bridge shown in Fig. 1.1. 
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Fig. 3.70 Damage development in the superstructure. 

The pushover curve is shown in Fig. 3.71. 

 
Fig. 3.71 Pushover curve (Load-Displacement relation). 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 3.72. Overall the whole superstructure shifted in the transverse direction due to the transverse load, 
except for the end of G1 which was restrained by the exterior shear key. The end diaphragm was stiff in 
its plane; hence, the zones that were reinforced by the diaphragms were stiff and thus demonstrated 
relatively small displacement. 
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(a) Top view. 

 
(b) Zoom in an exterior girder. 

Fig. 3.72 Transverse drift under self-weight, prestressing, and transverse force. (×10). 

3.3.3 Friction coefficient 0.1 

The friction coefficient of surface-to-surface contact between cap and girder was changed to be 0.1. 
Maximum principal stress and vertical deflection distributions of the bridge under self-weight and 
prestressing are shown in Figs. 3.73 and 3.74.  

 
Fig. 3.73 Maximum principal stress distribution under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 3.75. Fig. 3.75 shows that cracking initiates at the top of the deck and the web of exterior girder 
simultaneously. The damage development is shown in Fig. 3.76.  
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Fig. 3.74 Vertical deflection under self-weight and prestressing. (×500). 

 
Fig. 3.75 Maximum principal stress under self-weight and prestressing. 
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Fig. 3.76 Damage development in the superstructure. 

The pushover curve is shown in Fig. 3.77. 

 
Fig. 3.77 Pushover curve (Load-Displacement relation). 

The damage propagates in the deck and the end diaphragm, and will potentially go through the 
interior girders; the cracks in girders propagate along the longitudinal direction. The damage behavior 
demonstrated is in good agreement with the damage observed in the San Nicholas bridge shown in Fig. 
1.1. 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 3.78. Overall the whole superstructure shifted in the transverse direction due to the transverse load, 
except for the end of G1 which was restrained by the exterior shear key. The end diaphragm was stiff in 
its plane; hence, the zones that were reinforced by the diaphragms were stiff and thus demonstrated 
relatively small displacement. 

  
Fig. 3.78 Transverse drift under self-weight, prestressing, and transverse force. (×10). 

3.3.4 Frictionless 

The friction coefficient of surface-to-surface contact between cap and girder was changed to be zero. 
Maximum principal stress and vertical deflection distributions of the bridge under self-weight and 
prestressing are shown in Figs. 3.79 and 3.80. Overall the stress was very small, because the stress due to 
selfweight was partially balanced by the prestress effect. However, localized stresses were caused by the 
prestressed tendons at the anchorage zones. The deflection distribution is overall symmetrical about the 
middle span in the longitudinal direction, and symmetrical about the G3 in the transverse direction. 
Compared with the bridge with full end diaphragms, under self-weight and prestress, the bridge with 
partial end diaphragms demonstrated similar stress and displacement results in terms of the distribution 
and magnitude. 
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Fig. 3.79 Maximum principal stress under self-weight and prestressing. 

 
Fig. 3.80 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 3.81.  

 
Fig. 3.81 Maximum principal stress under self-weight, prestressing and transverse load. 
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Fig. 3.82 Maximum principal stress under self-weight, prestressing and transverse load. 

Fig. 3.81 shows that cracking initiates at the top of the deck and the web of exterior girder 
simultaneously. The damage development is shown in Fig. 3.82. The damage propagates in the deck and 
the end diaphragm, and will potentially go through the interior girders; the cracks in girders propagate 
along the longitudinal direction. 

 
Fig. 3.83 Pushover curve (Load-Displacement relation). 

The pushover curve is shown in Fig. 3.3.23. After the contact between E1 and G1 is established, 
reaction force will be applied to G1. With the increase of loading, maximum principal stress/strain in 
concrete will increase until crack is formed. Onset of crack corresponds to 2 mm transverse displacement. 
Then the structure will undergo a ‘softening’ stage representing the propagation of cracks in the concrete; 
however, the structure can resist higher load during that stage, because the concrete is reinforced by rebar 
that can provide tensile strength and restrain the cracking. With the propagation and widening of the 
cracks, eventually the rebar will yield and thus the structure will lose strength and fail. 
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3.3.5 Discussion on friction coefficient 

The influence of friction coefficient can be evaluated based on the investigations in Sections 3.3.1-3.3.4. 
The friction coefficient does not significantly influence the bridge’s behaviors under self-weight and 

prestressing, which are known as vertical behaviors, as shown in Fig. 3.84. No significant change for the 
vertical deflection and maximum principal stress observed with the change of friction coefficient. 

 
Fig. 3.84 Influence of friction coefficient under self-weight and prestressing. 

The load-displacement relations of the bridges with different end diaphragms under self-weight, 
prestressing and transverse load are compared in Fig. 3.85 that demonstrates the friction coefficient can 
significantly influence bridge’s transverse performance, including the failure mode, the transverse 
stiffness and capacity. 

The failure modes have been introduced in the preceding sections. At the very beginning of the 
loading, the materials were ideal elastic, so the displacement increased linearly with the load in the five 
curves. When damage initiated, the curve would be nonlinear. Eventually the structure would fail due to 
the fracture of concrete and yield of rebar. 

When the superstructure was supported on smooth caps by defining the friction coefficient to be zero, 
the movement of the superstructure would be solely constrained by exterior shear keys. Hence, in the 
transverse direction, the superstructure would only be subjected to the transverse load and the reaction 
force provided by the exterior shear key. The reaction force was all applied on the exterior girder where 
damage initiated and then propagated. When the deck and diaphragms are relatively thin, damage can 
possibly initiate and then propagate in the deck and diaphragm. This explains why the exterior girders are 
usually damaged earlier than the interior girders instead of being damaged simultaneously. The strength 
of interior girders was not fully utilized. Therefore, potentially the strength to resist transverse load can be 
further increased by making full use of the interior girders. 

When the friction coefficient is nonzero, all girders will be directly subjected to friction force in the 
transverse direction, so damage can potentially initiate in the multiple girder simultaneously. In this way, 
all girders directly help resist the transverse load, and thus the transverse stiffness and capacity can be 
increased, as shown in Fig. 3.85. It is manifested that up to 100% capacity and 60% stiffness can be 
gained by increasing the friction coefficient from 0 to 0.3. 
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Fig. 3.85 Comparison of pushover curves of bridges with different friction coefficients. 

 
Fig. 3.86 Influence of friction coefficient under self-weight, prestressing and transverse load. 

However, unfortunately during a real earthquake, the friction cannot always benefit the bridge. 
Typically a real world earthquake consists of both transverse and vertical ground motion components. 
The normal contact force varies during the earthquake; with a constant fiction coefficient, the friction 
force will vary with the normal contact force. This phenomenon can also be considered in another way 
that is to keep the normal contact force constant by adjusting the friction coefficient. Downward inertia 
forces can be equivalent to an increase of friction coefficient; upward inertia forces can be equivalent to a 
decrease of friction coefficient. When the superstructure is subjected to a downward inertia force, the 
friction will be increased, so the structure will be able to resist more transverse inertia force, which 
benefits the structure. However, when the superstructure is subjected to an upward inertia force, the 
friction will be decreased, so the structure’s capacity will be reduced, which may lead to damage. 

3.4 Summary 

In this section, bridges with different end diaphragms and support conditions were investigated. The 
influences of end diaphragm thickness and height, and the friction coefficient were evaluated in terms of 
the failure mode and capacity under self-weight, prestressing, and transverse load. 

The bridge’s behaviors under self-weight and prestressing were not significantly influenced by the 
end diaphragm and the friction coefficient of the supports. Within the investigation scope, less than 10% 
change was observed. However, the bridge’s transverse behaviors are significantly influenced by end 
diaphragm and the friction coefficient of the supports.  

For bridges with partial diaphragms, damage usually initiates near the joint of the exterior girder and 
the end diaphragm, which was in good agreement of the observations of damage in real world bridge. 
When the diaphragm thickness is varied from 10 cm to 50 cm, the stiffness linearly increases; however, 
the change of capacity is nonlinear. The curve can be divided into two parts by one data point that 
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corresponds to 75% diaphragm height. When the thickness is smaller than 30 cm, the capacity increased 
linearly. However, from 75% to 100% of diaphragm height, the capacity was increased by 160%. And 
when the diaphragm height was varied from 0 to 100%, the capacity was increased by 360%. 

For bridges with full end diaphragms, damage can initiate at the joint of deck and end diaphragm or 
the joint of exterior girder and end diaphragm. When the diaphragm thickness was varied from 50 cm to 
20 cm, the failure mode was fracture of concrete and yield of rebar; buckling of diaphragm was not 
observed. However, buckling of end diaphragm was observed when the diaphragm thickness was 10 cm, 
and transverse capacity was significantly reduced. When the diaphragm thickness is varied from 10 cm to 
50 cm, the stiffness linearly increases; however, the change of capacity is nonlinear. The curve can be 
divided into two parts by one data point that corresponds to 30 cm diaphragm. When the thickness is 
smaller than 30 cm, the capacity increases fast, and up to 133% capacity can be obtained by increasing the 
diaphragm thickness from 10 cm to 30 cm. However, after the 30 cm thickness point, the capacity will 
keep constant. 

When the friction coefficient is zero, representing smooth surfaces, transverse forces that the 
superstructure is subjected to will only consist of the transverse load and the reaction force provided by 
the exterior shear key. The reaction force is all applied on the exterior girder. In this case, damage will 
initiate and then propagate in the exterior girder; when the deck and diaphragms are relatively thin, 
damage can possibly initiate and then propagate in the deck and diaphragm. However, when the friction 
coefficient is not zero, all girders will be directly subjected to friction force in the transverse direction, so 
damage can potentially initiate in the multiple girder simultaneously. In this way, all girders directly help 
resist the transverse load, and thus the transverse stiffness and capacity can be increased. It is manifested 
that up to 100% capacity and 60% stiffness can be gained by increasing the friction coefficient from 0 to 
0.3. 
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SECTION 4 ANALYSIS OF BRIDGES WITHOUT END DIAPHRAGM 

In this section, the performance of bridge superstructures without end diaphragm is investigated. The 
functions and effectiveness of interior shear keys and friction coefficient of support are evaluated in terms 
of the failure mode, transverse stiffness and capacity of the bridges. 

4.1 Analysis of Bridge without Interior Shear Keys 

Structural behaviors of the two types of bridge were compared by finite element analysis. Fig. 4.1 shows 
the cross sections of the two types of bridge. 

 
Fig. 4.1 Comparison of the cross sections. 

The FE model of the bridge without end diaphragm is shown in Fig. 4.2. Maximum principal stress 
and vertical deflection distributions of the bridge under self-weight and prestressing are shown in Figs. 
4.3 and 4.4, respectively. Overall the stress was very small, because the stress due to selfweight was 
partially balanced by the prestress effect. However, localized stresses were caused by the prestressed 
tendons at the anchorage zones. The deflection distribution is overall symmetrical about the middle span 
in the longitudinal direction, and symmetrical about the G3 in the transverse direction. 

 
Fig. 4.2 A simplified FE model of bridge without diaphragm. 
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Fig. 4.3 Maximum principal stress distribution under self-weight and prestressing.  

 
Fig. 4.4 Vertical displacement distribution under self-weight and prestressing. (×500). 

 
Fig. 4.5 Maximum principal stress distribution. 

Fig. 4.5 shows the maximum principal stress distribution under self-weight, prestressing, and 
transverse force, which indicates that the cracking initiates at the top of the deck and the web of exterior 
and the adjacent interior girders, simultaneously. Fig. 4.6 shows the progreesive damage development in 
concrete, where the damage propagates in the deck and the end diaphragm. The failure mode is in good 
agreement with the observations of a real world bridge, Chada Bridge, which is shown in Fig. 4.7.4,5  
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Fig. 4.9 Pushover curve (Load-Displacement relation). 

4.2 Parametric Study of Friction Coefficient 

4.2.1 Friction coefficient 0.3 

The friction coefficient of the FE model shown in Fig. 4.2 was changed from 0.2 to 0.3. Maximum 
principal stress and vertical deflection distributions of the bridge under self-weight and prestressing are 
shown in Figs. 4.10 and 4.11, respectively.  

 
Fig. 4.10 Maximum principal stress distribution under self-weight and prestressing. 

 
Fig. 4.11 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 4.12 that shows the cracking initiates at the top of the deck and the web of exterior, simultaneously. 
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The damage development is shown in Fig. 4.13 where the damage propagates in the deck and the end 
diaphragm; the cracks in girders propagate along the longitudinal direction. 

 
Fig. 4.12 Maximum principal stress. 

 

 

 
Fig. 4.13 Damage development in the superstructure. 

The pushover curve is shown in Fig. 4.14. After the contact between E1 and G1 is established, 
reaction force will be applied to G1. 

 
Fig. 4.14 Pushover curve (Load-Displacement relation). 
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Transverse displacement of the bridge under self-weight, prestress, and transverse force is shown in 
Fig. 4.15. Overall the superstructure shifted in the transverse direction due to the transverse load, except 
for G1 and G2 which were restrained by E1. 

 
Fig. 4.15 Transverse drift. (×10). 

4.2.2 Friction coefficient 0.2 

The FE model and the simulation results have been introduced in Section 4.1. 

4.2.3 Friction coefficient 0.1 

The friction coefficient is set to be 0.1. Maximum principal stress and vertical deflection distributions of 
the bridge under self-weight and prestressing are shown in Figs. 4.16 and 4.17, respectively. 

 
Fig. 4.16 Maximum principal stress distribution under self-weight and prestressing. 

 
Fig. 4.17 Vertical displacement distribution under self-weight and prestressing. (×500). 
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Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 4.18 that shows the cracking initiates at the top of the deck and the web of exterior, simultaneously. 
The damage development is shown in Fig. 4.19 where the damage propagates in the deck and the end 
diaphragm; the cracks in girders propagate along the longitudinal direction. 

 
Fig. 4.18 Maximum principal stress. 

 

 

 
Fig. 4.19 Damage development in the superstructure. 

The pushover curve is shown in Fig. 4.20. After the contact between E1 and G1 is established, 
reaction force will be applied to G1. With the increase of loading, maximum principal stress/strain in 
concrete will increase until crack is formed. Then the structure will undergo a ‘softening’ stage 
representing the propagation of cracks in the concrete; however, the structure can resist higher load during 
that stage, because the concrete is reinforced by rebar that can provide tensile strength and restrain the 
cracking. With the propagation and widening of the cracks, eventually the rebar will yield and thus the 
structure will lose strength and fail. 
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Fig. 4.20 Pushover curve (Load-Displacement relation). 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 4.21. Overall the superstructure shifted in the transverse direction due to the transverse load, 
except for G1 and G2 which were restrained by E1. 

 
Fig. 4.21 Transverse displacement. (×10). 

4.2.4 Frictionless 

The friction coefficient is set to be zero. Maximum principal stress and vertical deflection distributions of 
the bridge under self-weight and prestressing are shown in Figs. 4.22 and 4.23, respectively. 

 
Fig. 4.22 Maximum principal stress under self-weight and prestressing.  
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Fig. 4.23 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 4.24 that shows the cracking initiates at the top of the deck and the web of exterior, simultaneously. 
The damage development is shown in Fig. 4.25 where the damage propagates in the deck and the end 
diaphragm; the cracks in girders propagate along the longitudinal direction. 

 
Fig. 4.24 Maximum principal stress. 

 

 

 
Fig. 4.25 Damage development in the superstructure. 
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The pushover curve is shown in Fig. 4.26. After the contact between E1 and G1 is established, 
reaction force will be applied to G1. With the increase of loading, maximum principal stress/strain in 
concrete will increase until crack is formed. Then the structure will undergo a ‘softening’ stage 
representing the propagation of cracks in the concrete; however, the structure can resist higher load during 
that stage, because the concrete is reinforced by rebar that can provide tensile strength and restrain the 
cracking. With the propagation and widening of the cracks, eventually the rebar will yield and thus the 
structure will lose strength and fail. 

 
Fig. 4.26 Pushover curve (Load-Displacement relation). 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 4.27. Overall the superstructure shifted in the transverse direction due to the transverse load, 
except for G1 and G2 which were restrained by E1. 

 
Fig. 4.27 Transverse drift. (×10). 

4.2.5 Discussion on friction coefficient 

The friction coefficient does not significantly influence the bridge’s responses to self-weight and 
prestressing, as indicated in Fig. 4.28. No significant change for the deflection and stress distributions was 
observed with the change of friction coefficient. 
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Fig. 4.28 Influence of friction coefficient on vertical behaviors. 

The pushover curves corresponding to different friction coefficients are compared in Fig. 4.3.20 that 
demonstrates significant changes due to the friction coefficient. With the increase of friction coefficient, 
both transverse stiffness and capacity of the superstructure were increased, which was manifested in Fig. 
4.30. Friction can restrain the transverse shift of the interior girders, and the reaction forces caused by the 
constraint can help resist the transverse inertia force. The total transverse reaction force can be distributed 
to multiple girders instead of concentrating on one single girder. In this way, the transverse stiffness and 
capacity can be appreciably increased. Up to 128% stiffness and 100% capacity can be gained by 
increasing the friction coefficient from 0 to 0.3. 

 
Fig. 4.29 Comparison of pushover curves of bridges with different friction coefficients. 

 
Fig. 4.30 Influence of friction coefficient on transverse behaviors. 
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4.3 Analysis of Bridge with Interior Shear Keys 

Last section has indicated that the friction between the cap and girder can benefit the superstructure by 
helping increase the capacity to resist transverse load. However, during the real earthquake, the bridge can 
be subjected to vertical inertia force and thus the friction force will be decreased or even eliminated. Then 
the interior girders will not be able to provide resistance to the transverse load. To address this problem, 
interior shear keys are proposed to constrain the transverse movement of interior girders and thus enable 
the multiple girders work together to resist the transverse inertia force due to seismic ground motions. 

Bridges with four different numbers of interior shear keys were investigated in this section as 
illustrated in Fig. 4.31. First, self-weight and prestressing were applied to each bridge. And then, the 
superstructures were pushed by transverse loads until failure. The bridges were evaluated in terms of 
failure mode, stiffness and capacity. 

 
Fig. 4.31 Illustration of the bridges with various interior shear key configurations. 

4.3.1 Installed one interior shear key 

The FE model of the bridge with one interior shear key is shown in Fig. 4.32.  

 
Fig. 4.32 A simplified FE model of bridge installed one interior shear key. 

Maximum principal stress and vertical deflection distributions of the bridge under self-weight and 
prestressing are shown in Figs. 4.33 and 4.34, respectively. Overall the stress was very small, because the 
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stress due to selfweight was partially balanced by the prestress effect. However, localized stresses were 
caused by the prestressed tendons at the anchorage zones. The deflection distribution is overall 
symmetrical about the middle span in the longitudinal direction, and symmetrical about the G3 in the 
transverse direction. 

 
Fig. 4.33 Maximum principal stress distribution under self-weight and prestressing. 

 
Fig. 4.34 Vertical displacement distribution under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 4.35 that shows the cracking initiates at the top of the deck and the web of exterior and the 
adjacent interior girders, simultaneously. The damage development is shown in Fig. 4.36 where the 
damage propagates in the deck and the end diaphragm; the cracks in girders propagate along the 
longitudinal direction.  
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Fig. 4.35 Maximum principal stress distribution. 

 

 

 
Fig. 4.36 Damage development in the superstructure. 

The pushover curve is shown in Fig. 3.34. 

 
Fig. 4.37 Pushover curve (Load-Displacement relation). 
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Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 4.3.8. Overall the superstructure shifted in the transverse direction due to the transverse load, 
except for G1 and G2 which were restrained by E1. 

 
Fig. 4.38 Transverse displacement in the superstructure. (×10). 

4.3.2 Installed two interior shear keys 

The FE model of the bridge with two interior shear keys is shown in Fig. 4.39. Maximum principal stress 
and vertical deflection distributions of the bridge under self-weight and prestressing are shown in Figs. 
4.40 and 4.41, respectively. Overall the stress was very small, because the stress due to selfweight was 
partially balanced by the prestress effect. However, localized stresses were caused by the prestressed 
tendons at the anchorage zones. The deflection distribution is overall symmetrical about the middle span 
in the longitudinal direction, and symmetrical about the G3 in the transverse direction. 

 
Fig. 4.39 A simplified FE model of bridge installed two interior shear key. 

 
Fig. 4.40 Maximum principal stress under self-weight and prestressing. 
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Fig. 4.41 Vertical displacement distribution under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 4.42. Cracking initiates at the top of the deck and the web of exterior and the adjacent interior 
girders, simultaneously. The damage development is shown in Fig. 4.43 where the damage propagates in 
the deck and the end diaphragm; the cracks in girders propagate along the longitudinal direction.  

 
Fig. 4.42 Maximum principal stress in the superstructure. 

 

 

 
Fig. 4.43 Damage development in the superstructure. 
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The pushover curve is shown in Fig. 4.44. 

 
Fig. 4.44 Pushover curve (Load-Displacement relation). 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 4.45. Overall the superstructure shifted in the transverse direction due to the transverse load, 
except for G1, G2 and G3, which were restrained by E1. 

 
Fig. 4.45 Transverse drift. (×10). 

4.3.3 Installed three interior shear keys 

The FE model of the bridge with two interior shear keys is shown in Fig. 4.46. Maximum principal stress 
and vertical deflection distributions of the bridge under self-weight and prestressing are shown in Figs. 
4.47 and 4.48, respectively. Overall the stress was very small, because the stress due to selfweight was 
partially balanced by the prestressing effect. However, localized stresses were caused by the prestressed 
tendons at the anchorage zones. The deflection distribution is overall symmetrical about the middle span 
in the longitudinal direction, and symmetrical about the G3 in the transverse direction. 

 
Fig. 4.46 A simplified FE model of bridge installed three interior shear key. 
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Fig. 4.47 Maximum principal stress under self-weight and prestressing. 

 
Fig. 4.48 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 4.49 that shows the cracking initiates at the top of the deck and the web of exterior and the 
adjacent interior girders, simultaneously. The damage development is shown in Fig. 4.50 where the 
damage propagates in the deck and the end diaphragm; the cracks in girders propagate along the 
longitudinal direction.  

 
Fig. 4.49 Maximum principal stress. (×10). 
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Fig. 4.50 Damage development in the superstructure. 

The pushover curve is shown in Fig. 4.51. 

 
Fig. 4.51 Pushover curve (Load-Displacement relation). 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 4.52. Overall the superstructure shifted in the transverse direction due to the transverse load, 
except for G1, G2 and G3, which were restrained by E1. 

 
Fig. 4.52 Transverse drift. (×10). 
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4.3.4 Installed four interior shear keys 

The FE model of the bridge with two interior shear keys is shown in Fig. 4.53. Maximum principal stress 
and vertical deflection distributions of the bridge under self-weight and prestressing are shown in Figs. 
4.54 and 4.55, respectively. Overall the stress was very small, because the stress due to selfweight was 
partially balanced by the prestressing effect. However, localized stresses were caused by the prestressed 
tendons at the anchorage zones. The deflection distribution is overall symmetrical about the middle span 
in the longitudinal direction, and symmetrical about the G3 in the transverse direction. 

 
Fig. 4.53 A simplified FE model of bridge installed four interior shear key. 

 
Fig. 4.54 Maximum principal stress under self-weight and prestressing.  

 
Fig. 4.55 Vertical deflection under self-weight and prestressing. (×500). 

Maximum principal stress distribution under self-weight, prestressing, and transverse force is shown 
in Fig. 4.56 that shows the cracking initiates at the top of the deck and the web of exterior and the 
adjacent interior girders, simultaneously. The damage development is shown in Fig. 4.57 where the 
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damage propagates in the deck and the end diaphragm; the cracks in girders propagate along the 
longitudinal direction.  

 
Fig. 4.56 Maximum principal stress. 

 

 

 
Fig. 4.57 Damage development in the superstructure. 

The pushover curve is shown in Fig. 4.58.  

 
Fig. 4.58 Pushover curve (Load-Displacement relation). 

Transverse displacement of the bridge under self-weight, prestressing, and transverse force is shown 
in Fig. 4.59. Overall the superstructure shifted in the transverse direction due to the transverse load, 
except for G1, G2 and G3, which were restrained by E1. 
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Fig. 4.59 Transverse drift. (×10). 

4.3.5 Discussion on interior shear key 

The interior shear key does not significantly influence the bridge’s responses to self-weight and 
prestressing, as indicated in Fig. 4.60. No significant change for the deflection and stress distributions was 
observed with the change of interior shear key number. 

 
Fig. 4.60 Influence of interior shear key number on vertical behaviors. 

The pushover curves corresponding to different interior shear key configurations are compared in Fig. 
4.61 that demonstrates significant changes due to the shear key. With the increase of interior shear key, 
both transverse stiffness and capacity of the superstructure were increased, which was manifested in Fig. 
4.62. Interior shear keys can constrain the transverse shift of the interior girders, and the reaction forces 
caused by the constraint can help resist the transverse inertia force. The total transverse reaction force can 
be distributed to multiple girders instead of concentrating on one single girder. In this way, the transverse 
stiffness and capacity can be appreciably increased. Up to 35% stiffness and 240% capacity can be gained 
by increasing the interior shear key number from 0 to 4. 

Interior shear key provides an alternative to enhance the structure’s performance under earthquake, 
and as a matter of fact, it is a more robust and reliable way than to increase the friction coefficient. When 
the superstructure is subjected to an upward inertia force, the normal contact force provided by the cap 
will decrease and thus the friction will be reduced. However, no matter whether the vertical inertia force 
is upward or downward, the interior shear key can always provide transverse reaction force as long as the 
contact is established. 
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Fig. 4.61 Comparison of pushover curves of bridges with different numbers of interior shear keys. 

 
Fig. 4.62 Influence of interior shear key number on transverse behaviors. 

 
Fig. 4.63 Comparison of pushover curves of different bridges. 

The simulations for each case have been introduced in the preceding sections with failure mode and 
the progressive failure process demonstrated. The comparisons of the pushover curves are shown in Fig. 
4.63, including the bridges that have full or half end diaphragms, bridge that has neither end diaphragm 
nor interior shear key, and bridge that does not have end diaphragm but have interior shear keys. The 
bridge that has full end diaphragms provides the highest capacity, and thus can perform best in 
earthquakes. The capacities of bridges that have partial end diaphragms and do not have interior shear 
keys are low, so they demonstrate more damage. Bridge that does not have end diaphragm can gain 
benefit from interior shear keys that help multiple girders work together, so even though the capacity is 
not as high as that of the bridge with full end diaphragm, such bridge can also perform well in 
earthquakes. Another reason is such bridge is not as stiff as the bridge with full diaphragm in the 
transverse direction and has better ductility, so the demand capacity is lower. 
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4.4 Summary 

In this section, bridges without end diaphragm but with interior shear keys were investigated. The 
influences of the friction coefficient and the number of interior shear keys were evaluated in terms of the 
failure mode and capacity under self-weight, prestressing, and transverse load. 

The bridge’s vertical behaviors were not significantly influenced by the end diaphragm and the 
friction coefficient of the supports. Within the investigation scope, less than 10% change was observed. 
However, the bridge’s transverse behaviors are significantly influenced by end diaphragm and the friction 
coefficient of the supports.  

For bridges that have neither interior shear keys nor end diaphragm, damages usually initiate near the 
joint of the exterior girder and the end diaphragm. This was in good agreement with the observations of 
damages in real world bridge. When the FC was varied from 0 to 0.3, the capacity linearly increased from 
427 to 957 kN; however, the change of stiffness is nonlinear. The curve can be divided into two parts by 
one data point that corresponds to 0.1 FC. There was a sudden increase from 0 to 0.1. 

When the bridges are instrumented with interior shear keys, the capacity can be significantly 
increased. With the increase of interior shear key number, both transverse stiffness and capacity of the 
superstructure were increased. Interior shear keys can constrain the transverse shift of the interior girders, 
and the reaction forces caused by the constraint can help resist the transverse inertia force. The total 
transverse reaction force can be distributed to multiple girders instead of concentrating on one single 
girder. In this way, the transverse stiffness and capacity can be appreciably increased. Up to 35% stiffness 
and 240% capacity increases have been demonstrated when the interior shear key number was changed 
from 0 to 4. 

Interior shear key provides an alternative to enhance the structure’s performance under earthquake, 
and as a matter of fact, it is a more robust and reliable way than to increase the friction coefficient. When 
the superstructure is subjected to an upward inertia force, the normal contact force provided by the cap 
will decrease and thus the friction will be reduced. However, no matter whether the vertical inertia force 
is upward or downward, the interior shear key can always provide transverse reaction force as long as the 
contact is established. 

By the comparison of pushover curves corresponding to different structures, the observations of the 
FHWA team during the Chile earthquake were understood, and it was verified that bridge superstructures 
with no end diaphragms between girders can be alternatives to the well-understood superstructures with 
end diaphragms when interior shear keys are provided. 
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SECTION 5 DESIGN AND EVALUATION OF DUCTILE SHEAR KEYS 

5.1 Introduction of Shear Keys 

Shear keys are often designed in bridge caps or abutments to provide transverse support to the bridge 
superstructure under lateral loads. They are of vital importance in resisting seismic loads. Shear keys in 
bridge applications are divided into two types, exterior or interior. Both of them can restrain the 
transverse movement of bridge superstructure. The contact reaction forces are transferred to the 
abutments or caps. To avoid damaging the abutments or caps, the shear keys are usually designed as 
sacrificial. 25 Once their capacity is exceeded, the shear keys will be damaged and will not provide further 
support. Energy is dissipated in the damage of the shear keys instead of breaking the vertical elements and 
causing collapse. 

In the current design, the shear keys are fixed on the abutment or cap. Such design leads to ease of 
construction. However, there are some disadvantages for such design. First, when the shear keys are 
broken, it will be difficult to repair or replace them. Secondly, the shear keys are rigid before the rupture 
of concrete, which limits the ductility of the bridge. Thirdly, the function to help multiple girders work 
together cannot be fully explored. The function and effectiveness of fixed interior shear keys have been 
introduced in Chapter 4. Even though the shear keys can significantly increase the capacity if the girders 
contact the shear keys simultaneously, the construction accuracy may not always be able to meet the 
requirements. When one girder contacts the shear key, there might be gaps between the other girders and 
their shear keys. As indicated in Chapter 4, the girders are sensitive to the gaps. Millimeter-order gaps can 
significantly influence the bridge’s performance. Since the fixed shear keys are rigid, the girder’s 
transverse movement will be totally constrained and thus will be damaged before other girders. Designs 
for ductile shear keys were proposed, of which the failure process is ductile instead of brittle. But the 
shear keys were still fixed by concrete, and would not demonstrate ductility until the rupture of concrete. 

5.2 A Novel Design of Movable Shear Key 

To address this demerit, the concept of ‘movable shear key’ is proposed, which means the shear key is not 
fixed but can slide on the abutment or cap, which is illustrated in Fig. 5.1. Comparison of a fixed shear 
key and a movable shear key is demonstrated in Fig. 5.2. 

 
Fig. 5.1 Illustration of the movable shear key. 

Movable shear keys mainly make use of rebar to provide transverse restraint instead of concrete, 
which enables better ductility, because the ductility of steel is far better than that of concrete. The 
stiffness and capacity can be conveniently designed by adjusting the amount of bars. By properly using 
movable shear keys that have lower stiffness than fixed shear keys, the capacity of superstructure can be 
improved by decreasing the sensitivity to gaps, and the ductility of the bridge can be significantly 
improved. 

The movable shear keys can either be cast in the field or prefabricated. By presetting the isolation 
gaps, the shear keys are easy to be repaired or replaced. The whole part can be conveniently picked up for 
repair, or removed for replacement, which enables accelerated bridge construction and rehabilitation. 
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(a) Fixed shear key                                         (b) Movable shear key 

Fig. 5.2 Comparison of fixed shear key and movable shear key. 

5.3 Implementation 

The implementation of the movable shear key in bridge application is shown in Fig. 5.3 where fixed shear 
keys are replaced by movable shear keys. Under a transverse load, which simulates the transverse inertia 
force due to seismic ground motions, the bridge superstructure shifts; meanwhile, the shear keys slides 
along the abutment/pier cap due to the contact force. In this figure, for simplification purpose, only the 
shear keys on the left side were displayed. In real application, the shear keys can be installed on both 
sides to help resist cyclic earthquake effect. 

The movable shear keys can be conveniently installed by simply being laid down in the preset pits. 

 
(a) Before deformation. 

 
(b) After deformation. 

 
(c) Comparison. 

Fig. 5.3 Implementation of the proposed movable shear key in bridge application. 

5.4 Analytical Models 

The working principles of the movable shear key are interpreted by a model of compound springs which 
is schematically illustrated in Fig. 5.4 where the friction is neglected for simplification purpose, which is 
conservative in accordance with the discussion in Sections 3 and 4. Since the shear keys shift together 
with the girders after the contact is established, as shown in Fig. 5.3, each contacting pair can be 
abstracted to be two springs in series as shown in Fig. 5.5. When multiple contacts are established as 
shown in Fig. 5.4, the series springs will consist parallel spring. Each spring can be defined with elastic 
and plastic material properties. 
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Fig. 5.4 The model of compound springs. 

5.4.1 Series springs 

The transverse shift stiffness of a shear key is denoted by SSK1; the stiffness of a girder is denoted by SG1. 
The left boundary is fixed; the right side is subjected to a concentrated force. Under such boundary 
conditions, the length changes corresponding to the shear key and the girder are ΔSK1 and ΔG1, respectively. 
The total displacement is denoted by ΔT. 

 
Fig. 5.5 Spring model for each pair of girder and shear key. 

The compatibility equation for deformation can be written as: 

∆்ଵൌ ∆ௌଵ  ∆ீଵ                                                               (5.1) 

where in elastic range, 

∆ௌଵൌ
ிభ
ௌೄ಼భ

                                                                      (5.2) 

∆ீଵൌ
ிభ
ௌಸభ

                                                                          (5.3) 

By substituting Eqs. (5.2) and (5.3) into Eq. (5.1), Eq. (5.1) becomes 
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∆்ଵൌ
ிభ
ௌೄ಼భ


ிభ
ௌಸభ

                                                                 (5.4) 

Eq. (5.4) can be rewritten as: 

ܵாொଵ ൌ
ிభ
∆భ

ൌ
ௌೄ಼భௌಸభ
ௌೄ಼భାௌಸభ

                                                            (5.5) 

where SEQ1 represents the equivalent total stiffness of the spring series system. 

For fixed shear keys,  

ௌܵଵ ≫ ܵீଵ, ∆ௌଵൎ 0                                                          (5.6) 

ܵாொଵ ൎ ܵீଵ, ∆ீଵൎ ∆்ଵ                                                        (5.7) 

For movable shear keys,  

ܵாொଵ ൏ minሺܵீଵ, ௌܵଵሻ , ∆ீଵ൏ ∆்ଵ                                                    (5.8) 

5.4.2 Stiffness variations in compound model 

For the compound model shown in Fig. 5.4, the stiffness of each spring can be different from that of 
another spring, which can be used to analogize the stiffness variations of multiple girders. For instance, 
the girders can have different stiffness values due to the variations in dimensions. Even for girders with 
the same dimension, they can demonstrate different stiffness. For example, the multiple girder system 
shown in Fig. 5.3, the exterior girders demonstrate smaller stiffness than the interior girder under 
transverse load, because the exterior girders are only restrained by the deck on one side instead of on both 
sides. 

The compatibility equation for parallel springs can be written as: 

∆்ൌ ∆்ൌ ∆ௌ  ∆ீ                                                           (5.9) 

where in elastic range, 

∆ௌൌ
ி
ௌೄ಼

                                                                      (5.10) 

∆ீൌ
ி
ௌಸ

                                                                          (5.11) 

By substituting Eqs. (5.10) and (5.11) into Eq. (5.9), the equivalent spring constant is 

ܵாொ ൌ
ி
∆

ൌ
ௌೄ಼ௌಸ
ௌೄ಼ାௌಸ

                                                                 (5.12) 

By substituting Eq. (5.12) into Eq. (5.11), 

∆ீൌ
∆
ଵାఈ

                                                                           (5.11) 

where αi represents the ratio of stiffness of the girder and shear key, and thus ߙ ൌ ܵீ/ ௌܵ. 
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If the stiffness of G1 is smaller than that of G2 and the shear keys have the same stiffness SSK, 
meaning SG1 < SG2 and SSK1 = SSK2, then α1 < α2, and thus ΔG1 ˃ ΔG2. This explains why the exterior girders 
usually suffer more than the interior girders in earthquakes. 
Differentiate equation 5.2.11 with regard to SSKi, 

d∆ಸ
dSSKi

=∆T
SG1

ሺSSK1+SG1ሻ2 >0                                                   (5.12) 

Each girder’s deformation increases with the increase of the shear key’s stiffness. To reduce girder’s 
deformation, the shear key’s stiffness needs to be decreased. Therefore, the movable shear keys can 
benefit bridge superstructures by adjusting the deformations of multiple girders that demonstrate different 
stiffness. 

5.4.3 Boundary variations in compound model 

If all the contacts are established simultaneously, meaning there is no gap, each series springs can be 
analyzed following the above procedures. However, there are always unequal gaps between the shear key 
and girder due to construction errors, meaning the contacts cannot be established at the same time in the 
real world. The investigations in Chapter 4 have indicated that millimeter-order gaps can significantly 
reduce the structure’s capacity. Such problems can be explained by boundary variations in the model of 
compound springs as illustrated in Fig. 5.6. The construction error is represented by a gap between the 
shear key and girder, which is denoted by Δei and i represents the girder/shear key number. 

 
Fig. 5.6 The model of compound springs with gaps. 

The compatibility equation for deformation can be written as: 

∆்ൌ ∆ௌ  ∆ீ                                                               (5.13) 

where in elastic range, 

∆ௌൌ
ி
ௌೄ಼

                                                                      (5.14) 
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∆ீൌ
ி
ௌಸ

                                                                          (5.15) 

By substituting Eqs. (5.14) and (5.15) into Eq. (5.13), 

∆்ൌ ሺܨ
ଵ

ௌೄ಼


ଵ

ௌಸ
ሻ                                                                 (5.16) 

The total transverse force can be obtained by: 

ܨ ൌ ∑ ܨ

ଵ ൌ ∑ ሺ

∆
భ

ೄೄ಼
ା

భ
ೄಸ

ሻ
ଵ                                                          (5.17) 

where n represents the number of girders that contact shear keys, and i=1,2,3,…,n.. 

∆்ൌ ∆்ଵ െ ∆                                                                 (5.18) 

For convenience, let 

Δe2 ≤ Δe3 ≤ Δe4 ≤ Δe5                                                           (5.19) 

With the increase of transverse load, there will be a moment when ΔT1 = Δe2, which represents the second 
girder starts contacting the shear key. Thus, afterward it will contribute to resist the transverse load with 
the first girder. By substituting ΔT1 = Δe2 into Eq. (5.16), Fc1 can be calculated: 

ଵܨ ൌ ∆ଶሺ
ௌೄ಼భௌಸభ
ௌೄ಼భାௌಸభ

ሻ                                                             (5.20) 

Differentiating Eq. (5.20) with respect to SSK1 leads to 

dFC1

dSSK1
=∆e2 ቀ

SG1

SSK1+SG1
ቁ

2
>0                                                   (5.21) 

Similarly, such deductions can be extended to other girders, and they can be written as: 

ௗி
ௗௌೄ಼

ൌ ൫∆ሺାଵሻ െ ∆൯ ቀ
ௌಸ

ௌೄ಼ାௌಸ
ቁ
ଶ
 0                                             (5.22) 

Therefore, when the construction error value is constant, the reaction force applied on G1 can be 
reduced by the reduction of the shear key’s stiffness. In other words, the movable shear key can benefit 
the bridge superstructure when construction error is unavoidable. 

5.5 Evaluation of Movable Shear Keys 

5.5.1 Without construction error 

Without considering the construction error, all girders contact shear keys simultaneously, which 
corresponds to the case in Fig. 5.4. The transverse stiffness can capacity can be designed by adjusting the 
sizes of the bars in the movable shear keys. Three diameters were investigated, which were 5 mm, 10 mm, 
and 20 mm. The FC was set as 0.2. 
(1) Diameter 5 mm bars 
For shear keys with 5 mm bars, the maximum principal stress distribution under self-weight, prestressing, 
and transverse force is shown in Fig. 5.7 that shows the multiple girders are subjected to similar stress 
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distributions. Since the maximum principle stress was smaller than the cracking stress, the concrete did 
not crack. The failure was was caused by the yielding of the bars in the shear keys that is illustrated in Fig. 
5.1. The amplified displacement is shown in Fig. 5.8 where the transverse drift was manifested. 

 
Fig. 5.7 Maximum principal stress. (×10). 

 
Fig. 5.8 Transverse drift. (×10). 

(2) Diameter 10 mm bars 
For shear keys with 10 mm bars, the maximum principal stress distribution under self-weight, 
prestressing, and transverse force is shown in Fig. 5.9 that shows the multiple girders are subjected to 
similar stress distributions. Since the maximum principle stress was smaller than the cracking stress, the 
concrete did not crack. The failure was was caused by the yielding of the bars in the shear keys. The 
amplified displacement is shown in Fig. 5.10 where the transverse drift was manifested. 

 
Fig. 5.9 Maximum principal stress. (×10). 
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Fig. 5.10 Transverse drift. (×10). 

(3) Diameter 20 mm bars 
For shear keys with 20 mm bars, the maximum principal stress distribution under self-weight, 
prestressing, and transverse force is shown in Fig. 5.11 that shows the multiple girders are subjected to 
similar stress distributions. Cracks appeared at the top of the deck and the webs of each girder. The failure 
mode is similar to that of the bridges with fixed shear keys. The amplified displacement is shown in Fig. 
5.12 where the transverse drift was manifested. 

 
Fig. 5.11 Maximum principal stress. (×10). 

 
Fig. 5.12 Transverse drift. (×10). 

By the simulations of bridges with different shear key configurations, pushover curves are obtained 
and compared in Fig. 5.13, from which it can be observed that the bars yield when the diameters are 5 
mm or 10 mm in movable shear keys. When 20 mm bars are used, rupture of concrete and yield of rebar 
in superstructure will happen. The movable shear keys can help the superstructure demonstrate higher 
capacity than the fixed shear keys. 
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Fig. 5.13 Comparisons of pushover curves of bridges with different shear key configurations. 

5.5.2 Boundary variations 

When the gap widths between the girders and shear keys are not the same, the contacts will not be 
established simultaneously, which has been introduced in Section 5.4.3 by the springs model. This 
problem was investigated by finite element analysis. When the exterior girder contacts the exterior shear 
key, four gaps were set for the other four girders, and the gap width was 5 mm. The bridges introduced in 
the Section 5.5.1 were investigated with 5mm preset gaps and compared with the bridge that did not have 
gap between the girders and shear keys. The studied bridges with 5mm gaps include one bridge with fixed 
shear keys and two bridges with movable shear keys. The diameters of bars in the movable shear keys 
were 5 mm and 10 mm, respectively. The FC was 0.2 in the simulations. The pushover curves are shown 
in Fig. 5.14. 

 
Fig. 5.14 Comparisons of pushover curves of bridges with gaps. 

At the beginning, the single exterior girder resisted the transverse movement solely. The concrete 
cracked and the some rebar yielded. Then the contacts for the other four girders were established and all 
girders resist the transverse load together. By the comparison of the three bridges with preset gaps, the 
one with movable shear keys connected by 20 mm bars gained the highest capacity that was a little 
smaller than the ideal bridge with no gap. 
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5.6 Summery 

A concept of movable shear key was presented, which benefits the bridge superstructures and the 
substructures. The transverse ductility could be appreciably improved. The stiffness was reduced which 
helps multiple girder configurations work better together, and it could possibly reduce the demand 
capacity in the seismic design. In summary, the movable shear keys benefit the bridge in four areas.. 

The ductility of the bridge can be significantly increased, which prevents ‘sudden failure’ from 
happening in earthquakes. More energy will be dissipated by the yielding of bars and the friction between 
components.  

 The demand capacity can be reduced by the decrease of transverse stiffness. 
 When unequal gaps existed due to the construction error, the movable shear keys could postpone the 

failure of the girders that contact the shear keys relatively earlier than other girders. Multiple girders can 
better work together, and thus higher capacity can be demonstrated. 

 When individual girder in the multi-girder system have different transverse stiffness, the movable 
shear keys can reduce the displacements of girders that have smaller stiffness than other girders, which 
will postpone the failure of girders with smaller stiffness and thus will improve the structural performance. 

A model of compound springs was presented for analytical analysis of the working principles of the 
proposed design of movable shear keys. The model successfully interpreted the advantages of the 
movable shear keys, and was validated by numerical simulations. 
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SECTION 6 CONCLUSIONS 

Based on extensive simulations both analytically and numerically, several conclusions can be drawn. 
(1) The vertical behavior of a concrete girder bridge superstructure is insignificantly influenced by 

the configuration and size of end diaphragms or the friction coefficient of supports. 
(2) The thickness and height of end diaphragms can significantly increase the transverse capacity of a 

multi-girder bridge superstructure. 
(3) The friction coefficient of bridge girders on their support surfaces can also significantly increase 

the transverse capacity of a girder bridge superstructure.  
(4) The interior shear keys can significantly improve the seismic performance of a multi-girder 

bridge. Their effect is more robust than the friction. The transverse capacity of a multi-girder bridge 
superstructure can be increased almost linearly with the number of interior shear keys. 

(5) A design of movable shear keys was presented and evaluated by numerical simulations. It was 
found effective to improving the seismic performance of a multi-girder bridge. 

(6) A model of compound springs was analytically developed and numerically validated to quantify 
the effectiveness of shear keys. 
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